Pathwise Coordinate Optimization

نویسندگان

  • Jerome Friedman
  • Trevor Hastie
  • Holger Höfling
  • Robert Tibshirani
چکیده

We consider “one-at-a-time” coordinate-wise descent algorithms for a class of convex optimization problems. An algorithm of this kind has been proposed for the L1-penalized regression (lasso) in the lterature, but it seems to have been largely ignored. Indeed, it seems that coordinate-wise algorithms are not often used in convex optimization. We show that this algorithm is very competitive with the well known LARS (or homotopy) procedure in large lasso problems, and that it can be applied to related methods such as the garotte and elastic net. It turns out that coordinate-wise descent does not work in the “fused lasso” however, so we derive a generalized algorithm that yields the solution in much less time that a standard convex optimizer. Finally we generalize the procedure to the two-dimensional fused lasso, and demonstrate its performance on some image smoothing problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathwise Coordinate Optimization for Sparse

The pathwise coordinate optimization is one of the most important computational frameworks for high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: warm start initialization, active set updating, and strong rule for coordinate preselection. Such a complex algorithmic structure grants superior ...

متن کامل

A General Theory of Pathwise Coordinate Optimization for Nonconvex Sparse Learning∗

The pathwise coordinate optimization is one of the most important computational frameworks for solving high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: warm start initialization, active set updating, and strong rule for coordinate preselection. These three features grant superior empirical...

متن کامل

Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory

The pathwise coordinate optimization is one of the most important computational frameworks for high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: warm start initialization, active set updating, and strong rule for coordinate preselection. Such a complex algorithmic structure grants superior ...

متن کامل

SparseNet: Coordinate Descent With Nonconvex Penalties.

We address the problem of sparse selection in linear models. A number of nonconvex penalties have been proposed in the literature for this purpose, along with a variety of convex-relaxation algorithms for finding good solutions. In this article we pursue a coordinate-descent approach for optimization, and study its convergence properties. We characterize the properties of penalties suitable for...

متن کامل

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sparse square root loss linear regression), combined with efficient active set selection strategies. Besides, the library allows users to choose diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007